
Zack Rusin zack@tungstengraphics.com

Gallium3D

Graphics Done
Right

Zack Rusin zack@tungstengraphics.com

Contents
● Recap

– Gallium3D
● General summary
● Why would you want to use it.

● Gallium3D latest changes

● Taking request (no singing)

Zack Rusin zack@tungstengraphics.com

DRI Driver Model

● Drivers were tied to OS, API, window system.

● EG, dealing with DRI cliprects in DrawArrays.

● Driver interface becoming unmanageable.

App Mesa DRI Driver

drm

DRI

Zack Rusin zack@tungstengraphics.com

DRI Driver Model

Zack Rusin zack@tungstengraphics.com

Graphics Pipeline
● Essentially the same for all modern API's

Zack Rusin zack@tungstengraphics.com

Impose new interfaces

● Isolate interactions with API, OS, HW.
● Identify new interfaces.
● Split the driver.

App Mesa DRI Driver

drm

DRI

Zack Rusin zack@tungstengraphics.com

Gallium in 2007

● The original plan for Gallium3D.

● Still more or less correct.

App Mesa
State

tracker

drm

DRI

Gallium
HW

Driver

OS,
Winsys

Zack Rusin zack@tungstengraphics.com

Since then...
● Rapid interface evolution

● Hopefully starting to stabilize, but there are still
some minor issues outstanding.

● On the horizon: simplify TGSI shader
representation

● Changes in the draw module

● New insights into fallbacks, driver structure.

● New utility code

Zack Rusin zack@tungstengraphics.com

Since then...
● Got some hardware drivers working

– I915 (updated to head)
– softpipe
– Cell driver
– i965

● External driver projects:

– Nouveau
– R300 work

Zack Rusin zack@tungstengraphics.com

Building blocks

● Gallium3D at its core is just an interface
● The actual functionality is split across

different modules
– Those modules can be mix-and-matched to

produce a complete solution

Zack Rusin zack@tungstengraphics.com

Building blocks

● Important modules within the framework
include:
– State trackers

● Implement API on top of Gallium3D

– Winsys
● Integration with a windowing system, low level

management (surfaces, buffers and fencing)

– Gallium3D driver
● Implements the Gallium3D interface

Zack Rusin zack@tungstengraphics.com

Building blocks

● Important modules within the framework
include:
– Draw

● Software vertex paths

– CSO
● constant state objects management

– Buffers management code
– TGSI code
– LLVM integration
– A few others (sct, util)

Zack Rusin zack@tungstengraphics.com

Software Rasterizer

● Codegen through LLVM and simple rtasm.

● A fairly clear path to performance.

● A good project for someone?

App Mesa
State

tracker

X

softpipe any
winsys

Zack Rusin zack@tungstengraphics.com

Hardware: i915

● Updated to the latest DRM changes.

● Near term goal: Rebase to X, DRM head.

● Later: DRI2, Polish, Performance...

App Mesa
State

tracker

i915
drm

DRI

i915 intel
winsys

Zack Rusin zack@tungstengraphics.com

It works on Windows

● This is actually working.

● Validates the portability claims for Gallium.

App
XP/DX9
Runtime

DX9
State

tracker

DD

HW

i915 XP
winsys

Zack Rusin zack@tungstengraphics.com

...It'll work anywhere

● DirectFB, VxWorks, Kdrive, GLES, Cellphones,
Robots, FreeBSD, MiniGLX, EGL, Clusters, etc.

● Wider audience --> better drivers.

App

Your
Graphics

API
HERE

Your
OS

Your
WM

i915
Your

Winsys
HERE

Zack Rusin zack@tungstengraphics.com

You don't even need
hardware...

● A nice way to work on hardware you don't
actually have available.

● Easy to capture, analyze dumps offline.

● TODO: Replay

App Mesa
State

tracker a filei965simple Simulator
Winsys

Zack Rusin zack@tungstengraphics.com

Shaders

● At the very core of Gallium3D
● TGSI used throughout

– Drivers can either:
● Use TGSI directly
● Employ LLVM code-generation facilities

Zack Rusin zack@tungstengraphics.com

LLVM

● TGSI compiled into LLVM IR
● LLVM optimization passes used
● Drivers implement LLVM code-generator

Zack Rusin zack@tungstengraphics.com

Winsys issues

● GLX implemented by DRI + the Winsys layer

● Swapbuffers, create surface, etc, seem to
bypass this nice stack.

App Mesa
State

tracker

i915
drm

DRI

i915 intel
winsys

Zack Rusin zack@tungstengraphics.com

Winsys issues
● Neat diagram above ignores non-drawing

aspects of the driver.

● There is real complexity here:

– Surface allocation – happens before context
creation

– GL extensions – need to know
(approximately) before context creation.

– Swapbuffers
● Currently winsys is splitting into two entities:

per-screen and per-context.

● May end up with a parallel stack, ie:

Zack Rusin zack@tungstengraphics.com

What's in a winsys?

● Orange components... A lot of interfaces...

● Small piece of code, but complex.

● SOON: Split it up for a clearer stack.

App

GL State
tracker

i915
drm

DRI

HW
context Context

HW
info

ScreenGLX

Zack Rusin zack@tungstengraphics.com

New diagram

Zack Rusin zack@tungstengraphics.com

Summary
● We're getting there.

● Interface churn should start to slow down, but
some pain still to come.

● Focus to shift:

– Performance
– Conformance & correctness
– Stabilization

