
ODF Support in KWord 2
Girish Ramakrishnan
girish@forwardbias.in



About me

● Girish Ramakrishnan
● Ex-Troll
● ForwardBias



Agenda

● Whirlwind tour of ODF
● KWord 2 ODF Text Design
● ODF Testing Framework
● What's cooking
● Questions



What is ODF?

● XML Format for spreadsheets, 
presentations, word documents

● Brief history
– StarOffice (Sun) → OpenOffice.org → OASIS

● The spec is huge (~800 pages)
– Cross references many other specs like XML, 

SVG, XSLT, XFORMS.
– Surprisingly readable (damn...)

● For this preso, we care only about text 
documents



ODT 

● Text documents are stored as .odt
● Can contain 

– Paragraphs
– Lists
– Tables
– Frames
– Sections
– Graphical elements
– Notes, annotations, ruby text, references, 

bookmarks, TOC, change log, ...
● Imagine lots of XML element names and 

attributes  for the above



ODT File Contents

● Zip file contains the following
– META-INF/manifest.xml (Contents of the zip file 

relevant to ODT and the mimetype)
– meta.xml (Author, Creation date and so on)
– settings.xml (Application settings)
– content.xml (The content)
– styles.xml (The styles i.e how the content looks)

● Content is kept separate from the style
– Easy to extract contents
– Styles can be reused



ODT Styles

● Classified by type/family
– Paragraph styles
– Character styles
– List styles
– Outline styles
– Conditional styles
– Section styles, Frame styles, ruby styles, note 

styles, annotation styles...



Styles

● Classified by concept
– Default style

● Used when an entity does not state a style
– Named style

● Styles that have ”names” (style manager)
– Master style

● Styles for pages, header/footer
– Automatic style

● Styles created on the fly
● Styles can have a parent style

– Attributes cascade
– Automatic styles usually have a parent



ODT File contents

● styles.xml
– Contains master styles, named styles, default 

styles
– Contains automatic styles too...

● content.xml
– Contains all the content
– Automatic styles



KWord – KoStore

● Task: Unpacking the odt
● libs/store – Read/Write archives
● Also handles encrypted stores

– Queries user for password, if need be
● Task: Extract contents of the archive

KoStore *store = KoStore::createStrore(
”test.odt”, KoStore::Read);

store>open(”content.xml”);
QIODevice *contentDevice = store>device();



KWord – Parsing XML

● Task: Parsing XML
● We have our own DOM parser written for 

speed & memory usage
● API identical to QDom (meant to be a drop-in 

for Qt Dom)
● Main differences

– Nodes are loaded on demand
– Read only
– No DTD handling



ODF Library - libs/odf

● Task: Process ODF documents
● Understands the ODF XML Schema
● Goal is to make it a library that can be used 

for processing ODF documents without 
requiring it to be rendered

● Use case: document processors, report 
generators



ODF Library - libs/odf

● Query style information of the document
● Push a style and its parents into a stack and 

query its properties (KoOdfStyleStack)
● Holds information about a style and query for 

existing style of the same format 
(KoGenStyle, KoGenStyles)

● Far from complete
– Input/Output is mostly XML. User needs to know 

ODF



KWord - ODF Text

● Task: Load the text into a structure that can 
be drawn

● Qt 4 brings Qt Scribe (i.e QTextDocument 
and friends)

● ODF has lots of features compared to Qt 
Scribe
– Extend Qt Scribe



Qt Scribe

● Central class is QTextDocument
● A paragraph is a ”block”
● Blocks are made of fragments
● A list is set of non-contiguous blocks
● Blocks, fragments, lists can have formats

– QTextBlockFormat, QTextCharFormat, 
QTextListFormat

● QTextCursor can be used to manipulate text
– cursor.insertText()



Extending Qt Scribe

● The formats are nothing but a QMap<int, 
QVariant>

● One can store arbitrary values in the formats
– Store ODF specific properties in the format using 

custom keys in the QMap



Loading ODF

● Task: Load ODF into the QTextDocument

● All styles are parsed
– Named and default styles are put in Style 

manager
– Style manager generates a unique id for each 

named style



Loading the document (Text)

● Use QTextCursor to load text
● Applying styles

– Convert ODF style to QTextFormat
– Save the style id into the format's QMap

● That's it!



Editing the document

● Edit/make changes to the document using 
QTextCursor (just like QTextEdit)
– We throw away the DOM

● When applying a named style, overwrite the 
existing format

● When applying an automatic style, merge 
with the existing format



Saving the Document

● Write blocks one after the other
● Generate automatic styles for each block by

– Diff'ing against the ”StyleId” style



Lists

● Lists can be nested and have styles for 
different levels
– QTextList does not support nested lists

● KoListStyle
– Maintains a QTextList for each level

● At layout time, we generate the numbering 
for the list items
– Complex stuff



Flake

● Text documents can have embedded content 
aka frames
– Frames can be non-text

● Flake is a ”shape” framework (Very similar to 
GraphicsView)

● A flake contains
– shape(s) that can be placed on a canvas
– Provides tools to modify the shapes
– Shapes can load/save ODF

● It's plugin based
– Textshape plugin for text handling



Layout

● Qt Scribe can be provided a custom layouter 
● KWord has a custom layout to accomodate 

ODF features
● Allows run around of text (any shape for that 

matter) along painter paths



ODF Testing Framework

● Goal: Testsuite that can check if documents 
are loaded and saved correctly by ODF

● Test cases from OpenDocument Fellowship
● Uses the QtScript binding generator (TT 

labs)
● Strategy

– Loading Document using kotext
– Load document created by a script
– Compare both documents

● Does not check if the document is actually 
rendered correctly



Current Status

● 1.6 already had good ODT support
– Qt 3 Text document was forked and extended

● 2.0, lots of rewritten code
– Moving to Scribe
– Flake architecture
– Lots and lots of code, with very little testing (like 

KDE 4.0, playing catch up with 1.6. We need 
help!

– No plans to keep API BC after 2.0



What's cooking

● Style manager (Thomas)
● Headers, lists (Girish, Roop)
● TOC, Page layout (Peirre, Sebastien)
● Paragraph tool (Florian)

● There is a LOT of work to be done
– Usable but not ready for user testing. There are 

lots of small bugs. We need developers who can 
test and fix

– Tables
– Many ODF features have no UI
– KWord Audit has list of tasks TODO.

http://wiki.koffice.org/index.php?title=Kword_audit


KWord and ODF spec

● Constant feedback to Oasis
– Unfortunately, one needs to pay to be a member 

of Oasis
– Channelled through David Faure and Thomas 

Zander



Questions?

Thank you!
(With special thanks to NLNet.nl, 

Thomas, Thorsten, David)


